PHYSICAL REVIEW E

VOLUME 47, NUMBER 2

FEBRUARY 1993
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Electron-energy distribution functions (EEDF), electron-transport parameters, and rate coefficients
have been calculated by solving the time-dependent Boltzmann equation in weakly ionized plasmas in N,
and H,, for a wide range of the field frequency going from w <<v, up to o >>v;,, where v, and v;, are
two characteristic relaxation frequencies for energy and momentum transfer, respectively. The effects
produced by the electron-vibration superelastic collisions have been taken into account in the Boltzmann
equation and their influence in the electron transport has been analyzed in detail. Both the temporal be-
havior and the time-averaged value of the EEDF and of several macroscopic quantities have been ob-
tained and discussed for different values of the field frequency. Among several other aspects, it is shown
that the instantaneous power absorbed from the field and the one dissipated in electron collisions are not
in phase, although, obviously, they exactly compensate each other on the average.

PACS number(s): 51.50.+v, 52.25.Dg

I. INTRODUCTION

In past years an increasing interest has been devoted to
the theoretical and experimental characterization of
radio-frequency (rf) discharges, owing to their wide appli-
cations in plasma surface technology, such as plasma
deposition and plasma etching [1]. In this context, the
knowledge of the time dependence of the electron-energy
distribution function (EEDF) is especially important for
the understanding of the properties of the collision-
dominated bulk plasma in such discharges (see, e.g., the
works of Winkler, Capitelli, and Makabe, and their coau-
thors, in Refs. [2,3]).

As extensively discussed in those previous publications
[2,3], a qualitative analysis of the time dependence of the
isotropic and of the directional components of the elec-
tron distribution function under the action of a rf electric
field can be performed using two characteristic relaxation
frequencies for energy and momentum transfer, v, and
vy, (with v, <<v},), respectively, given by

ve(u)=%vm(u)+ Zvj(u)
i

and

Here, v,,(u) and v;(u) are the collision frequencies for
elastic momentum transfer and for inelastic excitation of
the jth state, respectively, m /M is the electron-molecule
mass ratio, and u is the electron energy. In this analysis
we can distinguish the following situations. (i) For low
field frequencies w <<v,, the isotropic component (that is,
the EEDF) follows in a quasistationary way the rf electric
field, presenting consequently a very large time modula-
tion in those parts of the relevant range of the electron
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energy where the above inequality is satisfied. Therefore,
in this low-frequency limit, the EEDF can be obtained by
solving the Boltzmann equation in a dc field for the
different time-varying values of the rf field strength. (ii)
When the field frequency increases up to v, =w <<vj,, in
most parts of the relevant electron-energy range, the time
modulation of the EEDF is significantly reduced and a
time-resolved solution of the Boltzmann equation is re-
quired instead of a quasistationary one. In this range of
o values the corresponding time-averaged value of the
EEDF is only slightly dependent on the field frequency
since the inequality @ <<v{, holds in the whole significant
electron-energy range. (iii) For higher values of w, so
that v, <<w=v{,, the time modulation of the EEDF is
strongly reduced. Moreover, if the frequency v{, is in-
dependent of the electron energy, the EEDF can then be
obtained by solving the Boltzmann equation in a dc field,
with an effective field strength given by

_Eo
V2 [1+(e/v)?]?

eff

where E;/V'2 is the rms value of the harmonic electric
field. That is the so-called “‘effective field approxima-
tion.” Finally, we note that in this latter case the time-
averaged value of the EEDF is strongly diminished as
increases beyond the limit w ~v¢{ , excepting near the ori-
gin of the electron-energy space where the EEDF exhibits
a strong peak.

The various situations described here have been ana-
lyzed in detail both for discharges in atomic and in
molecular gases. Thus the EEDF has been obtained by
using the quasistationary approximation [4] at low field
frequencies w <<v, and by using the effective field ap-
proximation, valid as +{ (u)=const, at the high-
frequency limit [5] w >>v,. This latter case has also been
extended to situations where v¢, is dependent on the elec-
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tron energy by introducing an effective electric field [6]
given by

E E, 1
CV2 1+ /v, )* 2

where v, is a momentum transfer collision frequency for
the bulk electrons which can be somewhat arbitrarily
chosen (see Ref. [6]). The intermediate range of the field
frequency values, w=v,, has been treated by solving the
time-dependent Boltzmann equation in the works of
Winkler and Capitelli, and their coauthors [2,7], and
more recently also in Ref. [8]. However, in all these
works the field frequency has been considered smalier
than v, so that the anisotropic component of the elec-
tron distribution function follows instantaneously the rf
electric field, whereas the time-averaged value of the
EEDF remains practically unchanged as w varies. Final-
ly, the range of the field frequencies going from
V,=w <<V, up to v,<<w=v;, has been covered by
Makabe and Goto [3] for molecular gases such as CH,
and H,. Nevertheless, in Ref. [3] the effects produced by
the electron-vibration (e-¥) superelastic collisions have
not been taken into account in the Boltzmann equation.

It follows from the present discussion that we can ex-
pect an important time modulation of the EEDF for an-
gular field frequencies such that w<v, in the whole
significant electron-energy range. In an atomic gas
discharge, at field frequencies not too low (w2 108 s 1)
and at gas pressures typical of rf plasma processing, the
inequality w Sv, holds only in the high-electron-energy
part of the EEDF, so that there is no modulation of the
bulk electrons. We note that the characteristic frequency
for energy transfer v, is a monotonously increasing func-
tion of the electron energy. Therefore the effective field
approximation is a very satisfactory approach to describe
these plasmas. However, this is no longer true if we deal
with a molecular discharge, where the characteristic fre-
quency v, presents significant values even at electron en-
ergies as low as a few eV (e.g., in N, at u ~2.5 eV), as a
result of the dissipation of electron energy in vibrational
excitation. Obviously, in this latter case the effective field
approximation cannot be used [7].

In this paper we present a theoretical approach based
on the Boltzmann equation to the systematic investiga-
tion of the time dependence of the electron transport in a
rf electric field bridging the whole range of the field fre-
quency going from w <<v, up to w >>v¢,. This study will
be carried out for discharges in N, and H, both for the
case of vanishingly small vibrational excitation T,~T,,

v
where T, and T, denote the vibrational and the gas tem-
peratures, respectively, and for the case of appreciable vi-
brational excitation 7, >>T,. In the latter situation the
e-V superelastic collisions are taken into account in the
Boltzmann equation. Finally, we note that previous
works having dealt with this subject have not considered
the e-V superelastic collisions (in the case of Ref. [3]) or
they have considered only the range of low field frequen-
cies w<<v;,, i.e., they have supposed the anisotropic
component of the electron distribution in quasiequilibri-
um with the rf applied field (see, e.g., Ref. [7]).
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II. THEORY

A. Basic theoretical formulation

In this section we summarize the present theoretical
development of the spatially homogeneous Boltzmann
equation under the influence of a time-varying sinusoidal
electric field

E(t)=Eqcos(wt) , (1

with E,= — Ee,, and where o is the angular frequency.

The electron velocity distribution function F(v,¢) can
be obtained by solving the time-dependent Boltzmann
equation

oF

e JoF
at E

m av

=I(F)+J(F), (2)

where e and m are the electron absolute charge and mass,
respectively, v is the electron velocity, and I and J denote
the collision operator for elastic and for inelastic col-
lisions, respectively. In this paper we will neglect pro-
cesses which result in the production or loss of electrons,
i.e., attachment and production of secondary electrons by
ionization, so that J(F) includes only the effects of
energy-exchange processes, both for inelastic and supere-
lastic collisions. Therefore the electron velocity distribu-
tion is normalized through the condition

JFv,0)d*v=n,, (3)

where n, denotes the time-independent electron number
density.

Equation (2) is solved by expanding F in Legendre po-
lynomials in velocity space and in Fourier series in time
(see, e.g., Refs. [9,3)),

F(v,t)=3 3 Re{F{(v)e/*®'}P,(cos) , 4
1=0k=0

where 0 is the angle between —E, and v, v=|v|, Re{ }
means the ‘“real part of,” and F‘,ﬂ is a complex function
expressing the time delay of the electron transport with
respect to the applied electric field (1). Here, we will as-
sume that the anisotropies resulting from the field are
sufficiently small, so that the first two terms in spherical
functions suffice for the expansion [10]

F(v,t)=F%v,t)+FYv,t)cosb . (5)

Under this assumption, the lowest-order approximation
for the expansion in Fourier series, allowing a periodic
time variation in the isotropic velocity distribution (that
is, in the EEDF), is given by

FOv,t)~F3(v)+F3(v)cos[ 2wt + ¢I(v)] (6)
and

Flv,t)~Fl(v)cos[wt +¢l(v)] . (7

As shown below, the fact that the isotropic and the aniso-
tropic components of the electron distribution are func-
tions of E(¢)? and E (t), respectively, originates that the
isotropic velocity distribution, F°(v,), only has even har-
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monics in the Fourier expansion, whereas Fl(v,t) only
has odd ones. The normalization condition (3) appropri-
ate to the present simplifications can be written as

JFw
J P&

Y4mrv2dv = He s (8)

Y4mv2dv =0 , (9a)

and

f F9,(v)4mv%dv =0 (9b)

where F9r and F?; denote, respectively, the real and the
imaginary part of the complex function FJ=F9exp(j$J).

Introducing (4) into Eq. (2), one obtains the following
system of nonlocal equations in velocity space for Fg, F_‘g,
and F}, respectively:

1 d |eEp —

302 dv | 2 U R} [SI(FO)+To(FS) (10)
_ eE

]2mF‘2’+—3l;§; S0 =1 (F)+I(FD) (D)

. —,  eEy dF} eE, dF; — —

JoF;+ o > do =I,(F))+J(F}). (12)

In the absence of superelastic collisions and in the case of
excitation only from the ground state (the inclusion of su-
perelastic collisions and of excitation from states other
than the ground state will be considered in Sec. II B), the
collision terms are given by
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Jo(F§)=— vi(v)
j

> ]Fg(v)

v+vj

(14)

+2

J

I (F (2)_) is identical to the right-hand side of Eq. (13) but

with F9, J. O(F_g) is identical to the right-hand side of Eq.
(14) but with F9, and

I(FHY+J,(Fly=—v

vj(v+vj)F8(v+vj) ,

F!, (15)

Sm

with

=v,+ X v (16)
J
Here, M is the molecular mass, T, is the gas temperature,
k is the Boltzmann constant, v,, is the frequency for
momentum transfer in elastic collisions between electrons
and neutrals, v; = Nvo | is the frequency for inelastic exci-
tation of the jth state, o; denotes the corresponding elec-
tron cross section, N is the gas number density, and
(v+v;) is linked to the electron energy u and the energy
threshold u; through the expression (v-+v;)=[2(u
+u;)/m]'/%. Finally, v¢, denotes an effective frequency
for momentum transfer including both elastic and inelas-
tic contributions [10]. As discussed in Ref. [10], the use
of an effective frequency in Eq. (15) is justifiable in gases
for which inelastic scattering is not negligible but is near-
ly isotropic. The evaluation of such an approximation in
N, is treated in Ref. [11].
Substituting (15) into Eq. (12), one obtains for F|

_ eE, dF} eE, dF9
m(vé, +jow) dv 2m(ve, +jow) dv

(17)

0 This expression when inserted in Egs. (10) and (11) allows
1 d kT, dF : q
IO(F8)=—7—— ﬂt—vmlﬁ FO4+—& =011 (13)  us to write the following system of equations for FQ, F95,
dv my  dv and FY,:
J
2
1 eE, d dFy 4 dF3y B dF3;
e | m } @ ”2[ o T2 Ta T2 a || TREOHED, (18)
0 1 ek, d 2 ng A dF3 B dFj; _ o 0
—ZQ)FZI 6v2 m —d—v v dv ? dv E‘ v —IO(FZR )+J0(F2R) > (19a)
1 |eEo | d dF§ B dF3x 4 dFj;
2Pt et T Jw P 2w 2w || TR e, (190
with
ve
= eZ_T_ (20a)
o
and
_
V24 e? (20b)

Following a procedure first proposed by Allis [12], we will transform the system (18), (19) into another one written in
terms of a sum of electron fluxes in energy space. So, at this point, we multiply both terms in each equation by 47v?
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and we renormalize the electron distribution function F 0 according to the condition Fv,t)4mv?dv = n,f Ou,t)V u du,
with u =1mv? i.e., for f3(u) we have fg’fg(u)\/u du=1. With these modifications, and after division of all terms by

2n,NV u in each equation, we readily obtain
2

_d | u ek, 1 dfg_*_idng +l KCRS Y ey 1 df%
du |60;, | N | 1+(w/NP*m/2u0) | du 2 du 2 |N o, du
d |2m df
= —ﬁam,ﬂ f8+kTg—E;— —u [goj(u) fg(uH-?[(u+uj)0'j(u+uj)f8(u+uj)], (21)
2
VG s SO B B e 1 e 1A% 1o | o 1 A ]
A 605, | N | 1+(w/NP*m/2uc®?) | du 2 du 2 |N o, du b
(22a)
where 72, is the right-hand side of Eq. (21) with £z, and
2
@ fop + 2 | Eo 1 © | gL (Yo 14 | 1dfh ] g
N 2 du |60, | N | 1+(/NP(m/2uc?) | |N of | du 2 du 2 du 2
(22b)

where R, is the right-hand side of Eq. (21) with f9,. In with f9x(u) and f9;(u), respectively, in place of f3(u);

the rewriting of Egs. (21) and (22) o}, represents an and (iii)

cllective clectron cross section for momentum UAISEer ¢ (1 (g ) =v/37m [ uo, ) u,hu , 29
The approach employed for solving these equations

consisted in converting them into three coupled sets of K

algebraic equations by finite differencing the electron- Ci(1)=(C;)y+(C;)ygc08(2001 ) —(C;)ysin(2et ) , (29)

energy axis into K cells as described in Ref. [13]. These

sets of algebraic equations were simultaneously solved by

or in the form

with (C;), given by

matrix inversion. The accuracy in the energy-averaged A 0

electron power balance achieved with the nun%eyrical solu- (€)o v2/m f o “9i ()foluldu , 30

tions was always better than 107 ° for the three functions. and (C;),z and (C;),; given by similar expressions with
Once the functions fQ(u), f3z(u), and f3;(u) are ob- ng(u)jand f(z)I(“)-J

tained, the anisotropic component f](u) is then calculat- The energy-averaged power balance is an excellent test

ed from Eq. (17) _after the renormalization o the accuracy of the numerical solutions. Thus we can

Fi(v)4mv’dv=n,f{(u)Vudu. The drift  velocity obtain the energy-averaged power balance equation, per

va(t)=v,(t)e,, the energy-averaged electron energy  electron and at unit gas density, by multiplying Egs. (21)
(u )(2), or, for example, the electron rate coefficient C;(f)  and (22) by uV2/m and then integrating over all ener-

for excitation of the jth state can now be readily ob- gies. The resulting equations are
tained: (i) _ 31)
va(t)=Re{V,0e/?} , 23) (Pglo=(Pe)ot (Piner)o »
with VdO given by (PE)ZR:(PCI)ZR +(Pinel)ZR +(Pa))2R , (32a)
Vio=V2/m fowuf}(u)du ; 24)  and
(ii) (Pl =(Po)yr + (Piget ) +(Py, )y (32b)
(u)(t):-fomuyzfo(u,t)du R (25)  with each term given by
which can be written in the form ek, _
. (Pglo=—=Re{Vy} , (33)
Cu)(0)=Cu o+ u)gcos(2wt)—{u ), sin(20t) ,  (26) 2N
with {u ), given by (Pg)gr =(Pg)g » (34a)
— [ %, 3/200
(u)y= fo w32 fu)du 27 B,
(Pg)y= Im{Vyo} , (34b)

and {(u),g and {u),; given by similar expressions but 2N
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Pylo=2"72 "o u? |94k, 0 g s
(Pado== 7 /mfo ont” |fo il LU (35
(P,),g and (Pg),; as in Eq. (35) but with f9 and f93;,
(Pinel)OZ 2 uj(cj )0 ’ (36)
j
(Pine1 )2z and (Pjne ),y as in Eq. (36) but with (C;),z and
(Cars
(Py)ag=—22(u) (37)
/2R N 21 »
and
Py =22(u) (37b)
02T T 2R -

Finally, we note that following this formulation the in-
stantaneous energy-averaged power absorbed from the
field, per electron and at unit gas density, is given by

J.-E) .
PE(t)z Z(PE)o[l+COS(20)t)]_(PE)leln(zwt) ’
n,N
(38)
where J, = —en, v, denotes the electron current density.

|

B. Extension to molecular gases

In molecular gas discharges, such as, e.g., in N, or H,,
we need to include the excitation of rotational and vibra-
tional levels in the collision term J of the Boltzmann
equation.

The excitation of molecular rotations is taken into ac-
count through a continuous loss flux in energy space [14],
which corresponds to including an additional term in the
right-hand side of Eq. (21) given by

%(43000148) (39)

and further similar terms in Egs. (22) with f9; and f9,.
Here, B, is the rotational constant and o,=8mg2%a3 /15,
where g is the electric quadrupole moment in units of ea3
(= 1.01 in N, and = 0.62 in H,), ay denoting the Bohr
radius.

On the other hand, owing to the relatively large popu-
lations in the excited vibrational levels, v >0, of the elec-
tronic ground state Ny(X '=) or Hy(X '=) usually
present in a discharge, the inelastic and superelastic col-
lisions of the electrons with those molecules must be tak-
en into account in Egs. (21) and (22). Thus, in Eq. (21),
for example, we must add the following terms:

38, —uo, () ) Hutu, o, (utu, )fS(u+u,,)]

+3 Sw[—uaw,v(u)fg(u)—l-(u —Uy )0y, (U —uvyw)fg(u —u,,)], (40)

whereas in Egs. (22a) and (22b) we must include identical
terms with f9; and f9,, respectively. Here, §,=N,/N
represents the fractional population in the vth vibrational
level, and o, , and o, , are the electron cross sections
for the inelastic and superelastic e-V energy exchange
vsw, with v <w, respectively. In this paper the effects of
e-V collisions have been included in the Boltzmann equa-
tion assuming modified Treanor vibrational distributions
[15]. A self-consistent treatment of this problem should
include the coupling between the EEDF, f Ow,t), and the
vibrational distribution function (VDF) of molecules in
the electronic ground state N,(X) or H,(X). This could
be done by solving the Boltzmann equation and a system
of rate balance equations for the vibrational levels includ-
ing, besides the e-V processes, the vibration-vibration (V-
V) and the vibration-translation (¥-T) energy exchange
processes. The coupling between the EEDF and the
VDF has not been taken into account here in a fully self-
consistent manner for the sake of clearness of the present
paper. However, a complete description of this problem
can be found in our previous publications [6,16,17],
which treat the cases corresponding to a dc applied elec-
tric field [16,17] and to a high-frequency (hf) one with a
frequency assumed sufficiently high so that the EEDF
can be supposed as quasistationary [6].

Finally, we note that the characteristic relaxation fre-

f

quencies v, and v, for energy and momentum transfer
(referred to in Sec. I) must include the contributions due
to the excitation of rotational and vibrational levels.
Thus, even in the case of vanishingly small vibrational ex-
citation, both frequencies must be corrected in order to
include rotational first- and second-order collisions and
vibrational first-order collisions, by writing [3]

2m dvy(u)
ve(u)z—l‘?vm(u)+8B0 du +§v0’v(u)+ %vj(u)

(41)

and

Vi (W) =v, (W) +2vo(u)+ 3 vy, (u)+ >vilu), (42)
v J

with vo(u)=NoyV2u/m, and where we have assumed
Vig+2t vy —2=2vy and (u;;i,—u;;-5)/2=4B,, J
denoting the quantum rotational number (see Refs.
[14,18]). On the other hand, vo,»(1) is the collision fre-
quency for the vibrational excitation O—v. Figure 1
shows the ratios v,/N and v, /N, as a function of the
electron energy, both for N, and H,, in the case of ab-
sence of vibrational excitation, i.e., for T, = T,. We note

v
that v,(u)/N presents a sharp maximum in N, at about
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FIG. 1. Ratio of the characteristic relaxation frequency to
the gas number density both for energy, v, /N, and momentum
transfer, v¢, /N (see text). N,—full curves; H,—broken curves.

2.5 eV due to vibrational excitation and a monotonic
growth at higher energies. On the contrary, in H, only a
smooth maximum appears due to vibrational excitation.

III. RESULTS AND DISCUSSION

The Boltzmann equation, written in the form shown in
Egs. (21) and (22), can be solved to yield the EEDF,
f%u,t), as a function of the independent parameters: ra-
tio of the electric field amplitude to the gas number densi-
ty, Eo/N; ratio of the angular field frequency to the gas
density, w/Nj; gas temperature T,; and vibrational tem-
perature T,. The latter parameter has been considered
here in order to take into account the effects produced by
the e-V superelastic collisions. The basic data on the
electron cross sections used in this work are exactly the
same as in Refs. [16,17] for N, and H,, respectively, so
that the reader should refer to those papers for details.

A. Discharges in N,

Figure 2 shows the EEDF calculated in N, for
Ey/N=6V2X1071° Vcem?, o/N=5X10"1" cm’s™!,
and T,=T,=400 K, i.e., in the absence of appreciable
vibrational excitation, and for the different times during
half period of the rf electric field shown in the inset. For
the considered rf field the EEDF oscillates with twice the
field frequency presenting a modulation of many orders
of magnitude and a small phase delay, relative to the ap-
plied electric field, in those parts of the electron-energy
range where o is appreciably smaller than the relaxation
frequency for energy transfer, v,, plotted in Fig. 1. Thus
the sharp maximum of v, /N at u =2.5 eV, of about 1077
cm®s™ !, due to vibrational excitation is clearly larger
than the value chosen here for w/N, so that for electron
energies around 2.5 eV the EEDF follows the rf field in a
quasistationary way excepting when the field goes

1267

107

1072

1073

£ (u,t) (ev™¥?)

1074

1075

1076

FIG. 2. EEDF in N, for Eo/N=6V2X10"'® Vcm?
w/N=5X10"" cm?®s™', and T,=7,=400 K. The various
curves are for the following values of the reduced time ¢ /T (T is
the field period): 0 (4); L (B); 1 (C); L (D); 1 (E).

through zero. We note that in this region of electron en-
ergies the EEDF is maximum when the absolute value of
the rf field passes through its maximum, decreases strong-
ly as the absolute value of the field decreases, and reaches
a minimum when the field passes through zero. In partic-
ular, for zero field, the EEDF is extremely reduced and
most of the electrons have only very small energy.

The other parts of the EEDF can be interpreted as well
by looking at the dependence of the relaxation frequency
v, on the electron energy shown in Fig. 1. There are two
energy regions # S 1.5 eV and 4 Su < 8 eV practically de-
void of vibrational or electronic inelastic processes,
which correspond to relatively small values of v, /N. In
both regions the inequality o <<v, is no longer valid so
the EEDF follows the rf field with a much smaller modu-
lation and large phase delay. On the other hand, in the
high-energy range u X 8 eV, dominated by the excitation
of electronic states, the relaxation frequency v, has ap-
proximately the same magnitude as for u =~2.5 eV, so
that the EEDF shows a very large modulation as well.
Finally, it is interesting to note that, as a result of the
nonequilibrium between the EEDF and the applied rf
field, the EEDF is different at the instants t and T /2—¢,
T denoting here the field period. The EEDF is naturally
larger when the rf field is decreasing, 0 <¢ < T /4, because
of a memory effect. Obviously, the differences between
the EEDF at both instants are decreasingly smaller as
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v, /N increases, which is the case as the electron energy
increases from ~8 to ~14 eV.

Figure 3 shows the various components of the EEDF,
ie., fo(u), fOr(u), and f9,(u), for the same conditions as
in Fig. 2. In the electron-energy regions where f u,t)is
strongly modulated f9; becomes close to f9 o> Which
means that f%u,) oscillates between =~2 f9 and nearly
zero. On the other hand, the inequality |f3,| << f9% in-
dicates the existence of only a very small phase delay ¢9

in Eq. (6).
Figures 4(a)-4(d) show the EEDF calculated for
E,/N= 6\/2><10_’6ch T,=T,=400 K, and the fol-

lowing increasing values of w/N: 10 % 10“8 1077, and
107% cm®s . For w/N=10"% cm®s ™| we observe only
a slight reduction of the magnitude of the time modula-
tion of the EEDF with respect to Fig. 2, as in this case
the field frequency is still largely smaller than v, in the
electron- energy regions 1.5%u<4eVand u28eV. For
©/N=10"%cm®s™! we have already w X v, in large parts
of the relevant range of the electron energies so that the
modulation of the EEDF is strongly diminished. Finally,
for o/N=10"7 cm3s™! [Fig. 4(c)] we have no modula-
tion since the inequality wX v, holds in the entire
electron-energy range. Furthermore, an increasing delay
of f%u,t) relative to the rf field occurs, approaching
T/4,ie., ¢9~—7in Eq. (6), as @— .

On the other hand, as long as o is smaller than the re-
laxation frequency for momentum transfer v, the time-
averaged value of the EEDF, f%u,t)=f5(u), is only
slightly dependent on o, since, then, Eq. (21) becomes
similar to the Boltzmann equation in a dc electric field of

10°"

1072

1073

12, 13 and 2 (ev™72)
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FIG. 3. Components of the EEDF in N, for the same condi-
tions as in Fig. 2 (see text): fJ (full curve); f9z (broken curve);
f9; (chain curve).
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magnitude equal to the effective field strength
E;=E, /V2, excepting that in the present case we must
keep in Eq. (21) the terms with 9z and f9; as well. The
time-averaged value f%(u,t)=f9(u) is strongly reduced
when w>>v;, which is the case of Fig. 4(d) for
©/N=10"° cm®s™!. As will be discussed below, when
o >>v;, the time delay of the electron current density ap-
proaches T /4 and the electrons cannot gain energy from
the electric field on the average. We note that when
o>>v, the time average over one period of Eq. (38)
yields only a vanishingly small value (J,-E)=~0. Thus,
for frequencies of this order, which correspond to mi-
crowave fields at gas pressures typical of plasma process-
ing, the EEDF exhibits a strong peak at zero energy.
This does not mean, of course, that a discharge cannot be
sustained at such higher frequencies. For a given value of
E,/N kept constant, the effective electric field E, (as
defined in Sec. I) approaches zero when w— o, so that
the case plotted in Fig. 4(d) corresponds, in fact, to a van-
ishingly small value of E,/N (see, e.g., Ref. [6] for the
analysis of EEDF in this limiting case).

The large modulation of the EEDF in the electron-
energy range 1.55u $4 eV is strongly reduced when we
consider the effects produced by the e-V superelastic col-
lisions. Figure 5 shows the EEDF for the same values of
E,/N, o/N, and T, as in Fig. 2, but for the case of a vi-
brational excitation corresponding to a characteristic vi-
brational temperature 7, =4000 K. The comparison be-
tween Figs. 2 and 5 allows us to evaluate the effects
caused by the e-V superelastic collisions in reducing the
effectiveness of the characteristic relaxation frequency for
energy transfer v,, shown in Fig. 1, in the electron-energy
range under discussion. The e-V superelastic collisions
produce a decrease in the modulation amplitude and an
increase in the phase delay of the EEDF, for energies
1.5Su <4 eV, as well as an enhancement of the high-
energy tail of the EEDF. This latter aspect has already
been profusely discussed in previous papers [16,17]. It
seems interesting at this point to compare the various
components of the EEDF: fJ(u), f9x(u), and f9,(u)
calculated in the conditions of Fig. 2, and shown in Fig.
3, with those calculated in the conditions of Fig. 5 and
now shown in Fig. 6. The e-¥ superelastic collisions pro-
duce an important reduction of f9; in the electron-
energy range 1.5Su S4 eV, which justifies the diminu-
tion of the time modulation previously discussed, and
only have a small influence for the higher energies u 2 8
eV, where it remains f3 ~ f9. Finally, it is worth noting
that the enhancement of the high-energy tail of the
EEDF from Fig. 2 to Fig. 5 is not very significant because
in these figures we have chosen a relatively high value of
E,/N. In the case of a lower value of E,/N, e.g., as
small as 32X 1070 V cm?, the effects produced by the
e-V superelastic collisions become much larger (see Ref.
[16] for the analysis of this latter aspect).

Figure 7 shows the real and 1maigmary parts of the an-
isotropic complex function f;(u), calculated for
Ey/N=6V2X107'® Vem?, T,=T,=400 K, and for

o/N=5X10"'°cm3s™!. For this relatlvely low value of
/N, we have w/N <<v; /N in the entire relevant
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electron-energy range, so that the anisotropic component
fYu,t) follows the rf electric field with no delay. This
can be observed in Fig. 7 due to the fact that the inequali-
ty |f % <<f { r Dractically holds in the entire electron-
energy range, which means that there is no phase delay in
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Fi=flexp(j¢l). On the contrary, when the equality
/N =v;, /N is approximately valid we have [f1;|~fl,,
with f1z >0 and f1, <0, which corresponds to a phase
delay ¢~ —m/4. Obviously, for larger values of w/N,
e.g., as high as 107% cm3s ™!, the imaginary part becomes
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FIG. 4. EEDF in N, for EO/N=6V§X 107 Vem? T,= T, =400 K, and for the following values of w/N in cm’s™ L 1077 (a);
1078 (b); 1077 (c); 107° (d). The various curves are for the instants shown in the inset.
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FIG. 5. As in Fig. 2 but for T, =4000 K.

predominant, |f1;| >>f1z, and ¢} approaches — /2.
Keeping in mind the behavior of f'(u,t) as w/N
varies, the drift velocity, plotted in Fig. 8 as a function of
time, can readily be interpreted. Figure 8 shows the drift
velocity [v,(f)=uv,(t)e,] calculated for the same values
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FIG. 6. As in Fig. 3 but for T, =4000 K.
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FIG. 7. 1Real and imaginary parts of the anisotropic complex
function £, in N, for Eo/N=6V2X10"¢Vem? T,= T,=400
K, and for o/N=5X10""°cm?®s™!. The full and broken curves
are for f1z and f1;, respectively.

of Eg/N and T,=T, as in Fig. 7, and for various values
of w/N between 5X107'° and 107¢ cm3®s™!. From in-
spection of Fig. 8 we can conclude that for o /N $1072
cm®s ™! there is no delay relative to the applied field; for
®/N=10"7 cm®s™! the phase delay is =~ — /4 in agree-
ment with the fact that the equality |f1,|~f1z holds
over most of the relevant electron-energy range; and for
the highest values of w/N the delay approaches —w/2.
On the other hand, for the highest values of w/N the
drift velocity strongly reduces in magnitude.

For completeness, in Figs. 9 and 10 we present, respec-
tively, the real part and the phase of the complex drift ve-

locity Vo=V 0e/® as defined in Eq. (23). We note that

[T T T T T T T T T T T T -

- A C 3
W 5S¢ 3

§ E va 3

cb (o] 1 11 1 1 el .
= r 1/4 /T3
— - —
= sF 3
¥ 3

of ]

| S S W U (N G NN N N G S ]

FIG. 8. Electron drift velocity in N, as a function of the re-
duced time ¢ /T, for Eq/N=6V2X107' Vcm?, T,=T,=400
K, and for the following values of w/N in cm®s™': 5X107'°
(A4);1078(B); 1077 (C); 5X 1077 (D); 107¢ (E).
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text) as a function of w/N, for Eq/N=6V2X107'® Vcm? and
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by writing v,(t)=V cos(wt+P), the instantaneous
energy-averaged power absorbed from the field, per elec-
tron and at unit gas density, given by Eq. (38), can be
transformed in
Pp(t)=(Pg)y+

Vdocos( 20t +P) , (43)

2N
with (Pg), given by Eq (33). Thus Fig. 9 indicates that
for /N 21077 cm®s ™! the real part of the drift velocity,
Re{V,,}, is significantly diminished, which corresponds
to a reduction of the same magnitude in the time-
averaged absorbed power Pg(1)=(Pg), In what con-
cerns the instantaneous absorbed power, it oscillates with
twice the field frequency and with the same phase delay
@ as the drift velocity plotted in Fig. 10.

Figures 11-13 show, as a function of the time, the
energy-averaged electron energy, {u )(t), the electron
rate coefficient for excitation of the first vibrational level

N,(X '3 ,v=1), Cy (1), and the electron rate coeﬂiment
for excnatlon of the entire electronic state N,(B* Tg),
CJ(t). These quantities have been calculated for
E,/N=6V2X1071® Vem?, T,=400 K, varlous values
of w/N between 5X 10~ 10’ and 1076 cm3s , and for

Phase @ (deg)

-90 1 | | 1 | I 1
5x107'° 5x10~° 5x1078 5x1077 2x10°°
w/Nlem3 s1)

FIG. 10. Angular phase of the complex drift velocity in N,
V.40= Vaoexp(j®), for the same conditions as in Fig. 9.
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FIG. 11. Energy-averaged electron energy in N, as a function
of the reduced time tz/T, for Eoq/N=6V2X10"'% Vcm?
T,=400 K, and for T,,=400 K (a) and 7,=4000 K (b). The
various curves are for the following values of w/N in cm®s™!:
5X107'°(4); 107° (B); 1072 (C); 1077 (D); 107 (E).

T,=400 K [in the case of Figs. 11(a), 12(a), and 13(a)]
and T,=4000 K (in the case of Figs. 11(b), 12(b), and
13(b)]. By inspection of these figures we can make the
following remarks: there is a marked reduction in the
time modulation (at the frequency 2w) of all these quanti-
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FIG. 12. Electron rate coefficient for vibrational excitation
N,(X,v=0)—N,(X,v=1) in the same conditions as in Fig. 11.



1272

ties as w/N increases; there is an increasing phase delay
which approaches —r, i.e., a time delay Ar~T /4, as
w— oo; the effects produced by the e-V superelastic col-
lisions in reducing the time modulation are small for
(u )(t) and CE(t), but they are extremely important for
Cy,1(2), which is a consequence of the behavior of the
EEDF within the electron-energy range 1.5 Su <4 €V, as
previously pointed out (see Figs. 2 and 5); the e-¥ supere-
lastic collisions produce a general increase in all these
quantities as 7', grows from 400 to 4000 K, and, in par-
ticular, they originate a strong increase in the electron
rate coefficient CZ(¢). We note that this latter effect has
already been discussed in detail in a previous paper [16]
and is a consequence of the enhancement of the high-
energy tail of the EEDF due to the e-V superelastic col-
lisions. It is still worth noting at this point that as /N
increases, the time delay of all these quantities ap-
proaches At =T /4, and not T /8 as stated in Ref. [2].
The value T /8 resulted from the fact that the authors of
Ref. [2] imposed the condition w <<v{, in their papers.

__Figures 14 and 15 show the time-averaged quantities
(u) and C, ,, respectively, as a function of w /N, and for
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FIG. 13. Electron rate coefficient for excitation of the elec-
tronic state N,(B 31rg) as a function of the reduced time ¢t /T, for
Eo/N=6V2X107'® Vcm?, T, =400 K, and for 7,=400 K (a)
and 7,=4000 K (b). The various curves are for the following
values of /N in cm®s™!: (a) 5X107'°(4); 107° (B); 1078 (C);
1077 (D); (b) 5X107'° (4); 107° (B); 1078 (C); 5X 1072 (D);
1077 (E); 5X 1077 (F).
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FIG. 14. Time-averaged mean electron energy, {u)(0),in N,
as a function of w/N, for E/N=6V2X107'% Vcm?, T, =400
K, and for T,=400 K (curve A) and T, =4000 K (curve B).

the same values of E; /N, T,, and T, as in Figs. 11 and
12. The fall-off of all these functions as @ /N increases is
a consequence of the decrease in the time-averaged value
of the EEDF, f%u,t)=f3(u), as o reaches its higher
values (@ >>vy, ).

It follows from the present discussion that the instan-
taneous energy-averaged power absorbed from the rf field
and the instantaneous power lost in electron collisions are
not in phase with each other. More precisely, the time
modulation of the instantaneous power lost by electron
collisions is strongly diminished and its phase delay ap-
proaches —m (i.e., At=T /4) as w/N increases, whereas
the instantaneous power absorbed from the field shows no
reduction in modulation and has an increasing phase de-
lay @ going to —w/2 [i.e., At=T/8, see Eqgs. (38) and
(43)]. Obviously, the time-averaged values of both quan-
tities exactly compensate each other and both go towards
zero as w/N increases beyond the limit w/N =~+{, /N.
We note that Pg(t)~—(Pg),;sin(2wt) as w— . Fig-
ures 16(a) and 16(b) show the instantaneous energy-

6T T T T
T, 5k .
(2]

5
o 4r §
1=
- B
= 7]

S
K
n 1
=
S _
3]

| L1 L1 1SA

0
5x10°° 5x107° 5x10°® 5x1077

w/N (cm3 s-1)

FIG. 15. Time-averaged electron rate coefficient for vibra-
tional excitation N,(X,v=0)—N,(X,v=1), as a function of
/N and for the same conditions as in Fig. 14.



47 TIME-DEPENDENT ELECTRON KINETICS IN N, ANDH, ... 1273

averaged power absorbed from the field, Pg(¢), and that
lost in electron collisions, Py, (t), per electron at unit gas
density and as a function of time, for
Ey/N=6V2Xx10"'¢ Vem?, T,=T,=400 K, and for in-
creasing values of w/N going from 1072 to 5X1077
cm’s™!. For the highest value of w/N, P, (t) is no
longer modulated in time, while the phase delay of Pg(t)
clearly approaches — /2.

B. Discharges in H,

Figure 17 shows the EEDF in H, calculated for
Ey,/N=3V2X107' Vcem?, o/N=2X10"° cm’s™],
T,=T,=400 K, and for the different times shown in the
inset. As seen from this figure, as compared with those
presented before for N,, the time modulation clearly is
less pronounced here than in N,, which is a consequence
of the relative magnitudes of the relaxation frequency for
energy transfer in both gases plotted in Fig. 1. The ratio
of the relaxation frequency to the gas density, v, /N, is
about one order of magnitude smaller in H, than in N,
and, furthermore, in H, the ratio v, /N does not present
any pronounced maximum due to the dissipation of elec-
tron energy in vibrational excitation as in N, at 2.5 eV.
The absence of such a maximum in H, originates that in
this case the effects of e-V superelastic collisions produce
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FIG. 16. Instantaneous energy-averaged power absorbed
from the field (full curves) and the one lost in electron collisions
(broken curves) in N,, as a function of the reduced time ¢ /T, for
Eo/N=6V2X107'® Vem?, T,=T,=400 K, and for the fol-
lowing values of @ /N in cmis™ ! (a) 1078 (A4); 5X 1078 (B); (b)
1077 (C); 5X 1077 (D).
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FIG. 17. EEDF in H, for E,/N=3V2X10"'® Vcm?,
w/N=2X10"° cm’s™'!, T,=T, =400 K, and for the following
instants 7 /T: 0(A); £ (B); 4 (O).

only minor modifications in the EEDF as compared to
those observed in N,.

Figure 18 shows the electron rate coefficient for the vi-
brational transition H,(X 'E], »=0)—>H,(X '3/,
v=1), plotted as a function of time, for
E,/N=3V2x107'® Vem? T,=400 K, T,=400 K
[Fig. 18(a)], and T, =3000 K [Fig. 18(b)], and for the fol-
lowing values of @/N: 2X107% 107% and 1077 cm®s ™.
The basic trends presented in this figure are very similar
to those shown before in Fig. 12 for N,, but now the
modifications due to the e-V superelastic collisions occur
to a smaller extent. Finally, Table I presents further data
on the electron rate coefficients for excitation of the trip-
let electronic state H,(b *2;"), which dissociates to yield
two H(1s) atoms, and for excitation of the singlet state
H,(B!S)). Table I shows the time-averaged value of
these coefficients, C;(7), as well as the ratio of the 2w
component, (C i ), to the time-averaged value,
C;(1)=(C;),. This ratio constitutes a measure of the de-
gree of time modulation exhibited by each of these rate
coefficients. It seems worth remembering here that Eq.
(29) may be written as follows:

C;(1)=(C;)o+(C;),c0820t +) . (44)

The changes produced in both electronic rate coefficients
as w/N increases and T, grows from 400 to 3000 K fol-
low the same basic trends as in N,, but now the effects
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FIG. 18. Electron rate coefficient for vibrational excitation
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produced by the e-V superelastic collisions are less pro-
nounced.

IV. CONCLUSIONS

We have carried out a systematic investigation, based
on the Boltzmann equation, of the time dependence of
the electron transport in N, and H,, under the action of a
time-varying sinusoidal electric field. The present ap-
proach allows us to bridge the entire range of the field
frequency going from w <<v, up to w>>v{,, where v,
and v}, with v, <<v%,, denote two relaxation frequencies
for energy and momentum transfer, respectively. The
role played by the e-V superelastic collisions has been an-
alyzed in detail.

The main conclusions of the present paper can be sum-
marized as follows.

(i) EEDF, electron transport, and rate coefficients. For
the low field frequencies w <<v,, the EEDF follows in-
stantaneously the applied rf field showing a large time
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modulation of many orders of magnitude at twice the
field frequency. As  increases the EEDF presents a
modulation and a delay relative to the applied field which
become increasingly smaller and larger, respectively. In
particular, when the inequality o >>v, holds over most of
the relevant electron-energy range, there is no modula-
tion and the time delay increases up to 4 of the field
period. This limiting case corresponds therefore to the
so-called effective field approximation. In the case of ap-
preciable vibrational excitation, when o S v, the modula-
tion of the EEDF is significantly reduced in a narrow
electron-energy range (1.5 S u S4 eV in N,), as a result of
a smaller effectiveness of the relaxation frequency v,, due
to the effects produced by the e-V superelastic collisions.
On the other hand, as long as the inequality w <<v¢, is
satisfied, the time-averaged value of the EEDF is only
slightly dependent on w. This is no longer true as w in-
creases beyond the limit @ ~+v{, and, in particular, when
the inequality w>>v¢, holds in most of the electron-
energy range the time-averaged value of the EEDF is
dramatically diminished. Qualitatively, the electron-
transport parameters and the electron rate coefficients for
excitation and ionization exhibit similar features.

(ii) Anisotropic component of the electron distribution
Sfunction, drift velocity, and power absorbed from the elec-
tric field. The directional component of the electron dis-
tribution function and the drift velocity follow instan-
taneously the applied field when the inequality o <<v%, is
satisfied in the entire range of the electron energies. For
higher values of w both quantities show a strong reduc-
tion in their magnitudes and present an increasing time
delay that approaches 4 of the field period when o >>v5,.
It follows from this fact that the instantaneous energy-
averaged power absorbed by the electrons from the field
is a time-modulated function at 2w, which is in
quasiequilibrium with the field when w <<v},. However,
for higher values of w the instantaneous power absorbed
from the field presents a strong reduction in its magni-
tude and an increasing time delay, which reaches 1 of the
field period in the limit o >>v%,. We further note that the
instantaneous absorbed power remains time modulated,
even for the highest values of w, while its time-averaged
value decreases to zero. This latter aspect is a conse-
quence of the time delay of the drift velocity approaching
+ of the field period when @ >>v{,, and, therefore, of the
fact that the electrons cannot gain energy from the field
on the average in this limit. Finally, we note that the
power absorbed from the field and that lost in electron

TABLE 1. Time-averaged rate coefficient and ratio of the component in 2w to the one independent of time, both for excitation of
the entire electronic states Hy(b 3Z;") and Hy(B 'S), for E,/N=3V2X 107! V cm?, T, =400 K, T, =400 and 3000 K, and for vari-

ous values of @/N.

H,(b’S]) H,(B'S))
o/N CY)=(C}), CEO=(CE)
(cm?s™!) (10712 cm?®s™}) (CE),/(CE), (10753 cm3s™h (C8),/(C%),
T,=400 K T,=3000 K T7,=400 K T,=3000 K T,=400 K T,=3000 K T7,=400 K T,=3000 K
2X107° 0.616 3.147 0.768 0.716 0.344 1.811 0.974 0.958
1078 0.350 2.792 0.251 0.235 0.170 1.428 0.504 0.486
1077 0.026 0.589 0.029 0.027 0.009 0.221 0.066 0.063
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collisions are not in phase with each other. Nevertheless,
both quantities exactly balance each other on the average
and both go to zero as w /v{, — .

Finally, it should be emphasized that one source of
inaccuracy in these calculations is the neglect of the time
dependences of the electron number density and of the vi-
brational distribution functions of molecules in the elec-
tronic ground states N,(X 'SS) and Hy(X 'S). How-
ever, the characteristic relaxation frequencies of these
quantities are largely smaller than the values for the an-
gular field frequency considered in this work, so that both

the electron and the vibrational densities can be assumed
here to be time independent. This would not be valid for
the extremely low values of w, but in this case the elec-
trons follow the rf field instantaneously and, then, the
electron transport can be very satisfactorily described us-
ing the Boltzmann equation for a dc field at the different
time-varying values of the rf field strength.
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